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Influence of environment fluctuations on incoherent neutron scattering functions
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~Received 18 December 2000; published 20 June 2001!

In extending the conventional dynamic models, we consider a simple model to account for the environment
fluctuations of particle atoms in a protein system and derive the elastic incoherent structure factor~EISF! and
the incoherent scattering correlation functionC(Q,t) for both the jump dynamics between sites with fluctu-
ating site interspacing and for the diffusion inside a fluctuating sphere. We find that the EISF of the system~or
the normalized elastic intensity! is equal to that in the absence of fluctuations averaged over the distribution of
site interspacing or sphere radiusa. The scattering correlation function isC(Q,t)5(n^e

2ln(a)t& c(t), where
the average is taken over theQ-dependent effective distribution of relaxation ratesln(a), and c(t) is the
correlation function of the lengtha. When c(t)51, the relaxation ofC(Q,t) is exponential for the jump
dynamics between sites@sinceln(a) is independent ofa# while it is nonexponential for diffusion inside a
sphere.
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By analyzing the incoherent scattering function,S(Q,v),
where Q is the scattering wave vector and\v the energy
transfer, techniques of quasielastic neutron scattering f
hydrogen atoms~the main neutron scatterers in a typical pr
tein! allow us to study motions of particles~atoms, mol-
ecules, chemical species, etc.! in biological systems@1#. For
this purpose, there are many physical situations of inter
such as molecules at surfaces, in micellar systems o
vesicles and structural cages, in which the system is mod
by the jump of particles among sites or by diffusion inside
confining geometry@2–5#. For instance, when the problem
can be described by the jump dynamics of a particle betw
two nonequivalent sites separated by a distancea, the elastic
part of S(Q,v) @i.e., the elastic incoherent structure fact
~EISF!#, is given by

A0~Qa!5122p ~12p!@12 j 0~Qa!#, ~1!

where j l(z) is the spherical Bessel function of the first kin
of order l, andp is the probability of finding the particle in
one of the sites. The incoherent scattering correlation fu
tion C(Q,t) @i.e., the inverse Fourier transform of the qua
elastic part ofS(Q,v)# is a single exponential independe
of Q given by C(t)5e2Gt whereG ~related to mean resi
dence times of the particle in either site! is the relaxation rate
of the probability of finding the particle in either site. Th
jump model has been used to study the internal molec
motions and to interpret the dynamical transition in prote
@6,7#.

Likewise, when the problem can be described by the i
tropic diffusion inside a sphere with impermeable surfa
@2#, one finds that forQ small, the quasielastic part o
S(Q,v) is well described by a single Lorentzian with th
linewidth G054.33D/a2, wherea is the sphere radius andD,
the diffusion constant of the particle. Equivalently,C(Q,t)
.e2G0t whereG0

21 is the typical time for a particle to dif-
fuse over the entire sphere. For times of order or larger t
G0

21 ~i.e., in thev!G0 limit ! the EISF is given by
1063-651X/2001/64~1!/011910~7!/$20.00 64 0119
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A0~Qa!5uF~Qa!u25U3 j 1~Qa!

Qa U2

. ~2!

Such an analysis is used by several authors@4,8,9# to study,
for instance, the internal dynamics, structure, and dynam
of surface molecules in proteins. In these studies, the
ticles~mainly hydrogen atoms! are assumed to diffuse within
permanent spherical cages.

On the other hand, it is well known that proteins are flu
tuating systems that undergo configurational fluctuations
their structure. In different conformational substates, a p
tein may have the same coarse structure but differs in lo
configurations leading to the fluctuations of the local en
ronment of each protein atom. As a result, a distance
tween sites or a structural cage in a protein fluctuate in len
or size ~and shape! and have a finite lifetime due to loca
structural relaxation just like in the mode-coupling picture
liquids @10#. In this respect, neglecting the fluctuations
shapes for simplicity, the dynamics of each hydrogen at
in a typical protein can be described, in the first approxim
tion, as a jump dynamics between sites separated by flu
ating distances or by diffusion inside a fluctuating sphere

In this paper, we present a simple model analysis to
count for fluctuations of the local environment. We focus
the derivation of the EISF andC(Q,t) in situations in which
the site interspacinga ~for the jump between sites! or the
sphere radiusa ~for the diffusion inside a sphere! is allowed
to fluctuate in the course of time. To model simply the flu
tuations ofa, we consider the following dynamics for th
system formed out of a particle atom jumping between t
sites@or diffusing inside a sphere with impermeable surfac!:
the particle keeps jumping between sites separated bya(t)
~or diffusing within the spherical cage of radiusa(t)# until it
suffer aconfigurational collisionof zero duration that equili-
brates both the site interspacing~or the sphere radius! and the
particle position. That is to say that after a collision the u
date particle position and the site interspacing~or the sphere
radius! are chosen according to the normalized equilibriu
distribution,
©2001 The American Physical Society10-1
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Peq~r ,a!5
e2b[V(a)1U(r ,a)]

E
0

`

da e2bV(a)E
0

4p

dVE
0

`

r 2 e2bU(r ,a)dr

,

~3!

wherer5(r ,V), r is the particle position,V stands for polar
and azimuthal coordinates,U(r ,a) is the potential energy fo
the particle position for a fixeda, while V(a) is the potential
of free energy associated to the length~spherical cage of
radius! a, andb215kBT is the thermal energy. The reduce
equilibrium distribution for the lengtha is defined as,
peq(a)5*0

4pdV*0
`r 2Peq(r ,a)dr. The waiting time between

successive configurational collisions is a random varia
with distribution f(t) related to the stationary correlatio
function of site interspacing~or the sphere radius! by

c~ t !5
^a~ t !a~0!&

^a2&
5E

t

`

f~t! dt. ~4!

Assuming that the environment fluctuations act on the p
ticle dynamics in renormalizing just the residence times~for
jump dynamics! or the diffusion constant~for diffusion dy-
namics!, thus, the Green’s function, i.e., the probability de
sity of finding the particle at the positionr with site inter-
spacinga ~inside a sphere of radiusa) at timet given that it
was initially at r0 with site interspacinga0 ~inside a sphere
of radiusa0), is given by

G~r ,a,tur0 ,a0!5G0~r ,tur0 ;a!d~a2a0!c~ t !

1Peq~r ,a! @12c~ t !#, ~5!

where G0(r ,tur0 ;a) is the Green’s function for a particl
with a fixed-site interspacinga ~or diffusing inside a sphere
of a fixed radiusa).

The incoherent intermediate scattering function,I (Q,t),
~which is the inverse Fourier transform ofS(Q,v)) is

I ~Q,t !5*da0*dr0*da*dr eiQ.rG~r ,a,tur0 ,a0!

3e2 iQ.r0 Peq~r0 ,a0!.

Using into this relation the expression of the Green’s fu
tion in Eq. ~5!, one can show that for an isotropic problem
the functionI (Q,t) splits into two parts as,

I ~Q,t !5A~Q!1@12A~Q!#C~Q,t !, ~6!

where the elastic part, i.e., the EISF of the system, is

A~Q!5U E
0

`

daE
0

4p

dVE
0

`

r 2 eiQ.r Peq~r ,a! drU2

, ~7!

and the incoherent scattering correlation functionC(Q,t)
containing all information about the relaxation dynamics,
01191
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C~Q,t !5K (
n51

`

gn~Qa! e2ln(a) tL c~ t !,

5F (
n51

` E
0

`

da ḡn@bV~a!,Qa# e2ln(a) tGc~ t !,

~8!

where the average of any functionf (a) is defined as
^ f (a)&5*0

`peq(a) f (a) da. Thegn(Qa) is theQ-dependent
bare distribution of relaxation ratesln(a) in the absence of
fluctuations, whileḡn@bV(a),Qa# is theQ-dependent effec-
tive distribution of relaxation rates that accounts for distrib
tion of a. To be specific, we assume that the effective pot
tial of free energy associated to the lengtha is given by

V~a!5H sa22«22kBT ln~a! ; a>R,

` ; a,R.
~9!

where «5sR2, R ~of order of the Van der Waals contac
length! is the minimum value ofa, s is the force constant
and the repulsive logarithmic term represents the entro
contribution that accounts for the increase in configurat
space asa increases. As a result of the balance between
attractive harmonic and repulsive entropic terms, the lenga
has an equilibrium value at finite temperatureT given by
aeq5max@R,(kBT/s)1/2#. We note in passing that such a ha
monic potential in Eq.~9!, without the entropic term, ha
been used to study the hydrophobic effect in the volu
fluctuations of globular proteins@11#.

In what follows, we derive in detail the EISF and th
C(Q,t) in Eqs. ~7! and ~8!, respectively, for the jump dy-
namics between sites and diffusion inside a sphere.

FLUCTUATING SITE INTERSPACING

Consider the jump dynamics of a particle between t
nonequivalent sites separated by a fluctuating distancea of
stationary correlation functionc(t) and witht1 andt2 being
the effective mean residence time of the particle in each s
For one site located at the origin, we have

e2bU(r ,a)5H p ; r50,

12p ; r5a, ;

0 ; otherwise,

p5
t1

t11t2
.

~10!

The distribution of relaxation rate is a delta functio
gn(Qa)5ḡn@b«,Qa#5dn,1 with l15G5t1

211t2
21. In this

case, the normalized scattering intensity is given by Eq.~6!
with the EISF and the scattering correlation function~inde-
pendent ofQ) given by

A~Q!5^A0~Qa!& and C~ t !5e2Gt c~ t !, ~11!

whereA0(Qa) is given in Eq.~1!. SinceG is independent of
the site interspacing, thus the effect of fluctuations onC(t) is
simply multiplicative as in Eq.~11!. As a result of site inter-
0-2
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INFLUENCE OF ENVIRONMENT FLUCTUATIONS ON . . . PHYSICAL REVIEW E64 011910
spacing fluctuations, the structure factorA(Q) ~shown in
Fig. 1! is the EISF for the jump dynamics between two si
separated by a fixed distancea averaged over the distributio
of the distance. Asb« gets smaller, the extrema ofA(Q)
become less pronounced and are shifted to the left, comp
to A0(Q). The mean-squared displacement of the particle

^X2&523
d ln@A~Q!#

d~Q2!
U

Q50

5p ~12p! ^a2&

5p ~12p! F 3R2

2b«
1

R2

11~p/2b«!1/2eb« erfc~Ab«!
G .

~12!

The solid line in Fig. 3~b! represents this function. Whe
b«→`, we havê X2&.p(12p)R2, like for nonfluctuating

FIG. 1. The EISFA(Q) in Eq. ~11! as a function ofQR for p
50.5 and«/kBT50.5,2 as quoted on the figure. The dashed l
representsA0(Q) in Eq. ~1! for a5R andp50.5 for comparison.
-

01191
s

ed
is

interspacing, whilê X2&.3p(12p)kBT/2s asb«→0, like
for motions in a harmonic potential. This behavior is com
patible and originates from jump dynamics between s
walls, the broadening of the point sites with temperature
sulting from the environment fluctuations.

Generalization of Eqs.~11! and ~12! to the case of jump
dynamics amongN equivalent sites on a fluctuating circle o
radiusa is straightforward. In this case, the normalized sc
tering intensity still writes like in Eq.~6! with the EISF given
by A(Q)5^A0(Qa)& and theQ-dependent scattering corre
lation function by

C~Q,t !5F(
l 51

N
^Al~Qa!&

12^A0~Qa!&
expH 2S 2t

t D sin2S lp

N D J G c~ t !,

~13!

where the amplitude

Al~Qa!5N21(n51
N j 0@2Qa sin~np/N!#cos~2 lnp/N!

for l 50,1, . . . ,N, andt is the effective mean residence tim
in each site. Interestingly, the mean-squared displacemen
the particle is simplŷ X2&5^a2&, where ^a2& is obtained
from Eq. ~12!.

FLUCTUATING SPHERE

The potential for diffusion inside a sphere of radiusa with
impermeable surface is

U~r ,a!5H 0 ; r<a,

` ; r .a.
~14!

In this case, the normalized scattering intensity is given
Eq. ~6! with the scattering correlation function given by
~15!
where theAn
l (Qa) are given by@2,12#:

An
l ~Qa!5

6~2l 11!~xn
l !2

~xn
l !22 l ~ l 11!

FQa jl 11~Qa!2 l j l~Qa!

~Qa!22~xn
l !2 G 2

.

~16!

ḡn
l (Qa,a) is theQ-dependent effective distribution of relax

ation timestn
l (a)5a2/(xn

l )2D, D is the effective diffusion
constant, and xn

l are the roots of equation@2,12#,
xn

l j l 11(xn
l )5 l j l(xn

l ). For the potential in Eq.~9!, the struc-
ture factorŝ A0

0(Q)& ~i.e., the EISF for a sphere of radiusa
averaged over the distribution of radii! and the EISF of the
systemA(Q) are therefore:
^A0
0~Q!&5^uF~Q!u2&5

9E
1

`

x3 @ j 1~xQR!#2 e2b«x2
dx

~QR!2E
1

`

x5 e2b«x2
dx

,

~17a!

A~Q!5u^F~Q!&u25U3E
1

`

x4 j 1~xQR! e2b«x2
dx

QRE
1

`

x5 e2b«x2
dx

U 2

.

~17b!
0-3
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FIG. 2. The amplitudeŝA0
0(Q)& and A(Q) in Eqs. ~17a! and ~17b!, respectively, as a function ofQR for two values of the reduced

energy«/kBT50.5,2 as quoted in the figures. The dashed lines representA0(Q) in Eq. ~2! for a5R for comparison. Note thatQR
P@0.1,6# in the typical neutron-scattering experiment.
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Figure 2 shows thatA(Q)<^A0
0(Q)& for all QR, and the

difference between the two functions increases with incre
ing the temperature, i.e., asb« gets smaller. The location o
minima of A(Q) and ^A0

0(Q)& do not coincide and thei
values are equal to zero forA(Q) while they are different
from zero for ^A0

0(Q)&. Like in Fig. 1, the location of
minima are shifted to the left, compared toA0(Q) and tend
to disappear asb« gets smaller. To assess to what exte
A(Q) and ^A0

0(Q)& contribute to the elastic intensity, w
turn back to Eq.~15!. The shortest relaxation time of thi
expansion isG21, whereG5(x1

0)2D/R2 is the typical time
for a particle to diffuse over the entire sphere of radiusR.
When t;G21, the second term containing the exponent
time-dependence in Eq.~15! can be neglected. In this cas
the incoherent intermediate scattering function reduces t
01191
s-

t

l

I ~Q,c!5c~G! ^A0
0~Q!&1@12c~G!#A~Q!. ~18!

This expression, which would represent the elastic part
S(Q,v) for the resolution time of aboutG21, contrasts with
the case in the absence of fluctuations, where the incohe
intermediate scattering function relaxes to the EISF for ti
scales of order or greater thanG21. Figure 3~a! displays
I (Q,c) versusQR for various values ofc(G). Manifestly,
I (Q,c) is different from the EISFA(Q), even for c(G)
50.1. It is obvious thatI (Q,c) will eventually be equal to
the EISF in thec(G)→0 limit when the particle diffusion is
very slow compare to fluctuations of the sphere radius. In
opposite limit, when the particle diffusion is fast compar
to sphere radius fluctuations, i.e.,c(G);1, the I (Q,c) is
essentially given bŷ A0

0(Q)&. The mean-squared displace
ment of the particle is
FIG. 3. Panel A: The intensityI (Q,c) in Eq. ~18! for diffusion inside a fluctuating sphere, versusQR for c(G)50.1,0.5,0.9 as quoted
in the figure.Panel B: Reduced mean-squared displacements^X2&/p(12p)R2 in Eq. ~12! ~solid line! for jump dynamics and 5̂X2&/3R2 in
Eq. ~19! ~dashed line! for diffusion, as a function of the reduced temperature kBT/«.
0-4
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FIG. 4. Panel A: Correlation functionC(0,t) in Eq. ~20! as a function of the reduced timeGt for the reduced energyb«50.5. The
dashed and dot-dashed lines represent e2kt and e2kt, respectively, withk513G/79 andk579G/633. Panel B: Reduced relaxation ratek/k
@ratio of Eqs.~23! and ~22!# as a function of«/kBT. For the two panels, we havev05G/2 and the quotations ‘‘under’’ (g5G/4), ‘‘crit’’
(g5G), and ‘‘over’’ (g54G) correspond, respectively, to underdamped, critical, and overdamped regimes ofc(t) in Eq. ~21!.
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^X &523
d~Q2!

U
Q50

5^r &

5
3R2

5 H 3

b«
1F11

2

b«
1

2

~b«!2G21J . ~19!

Note that̂ X2& is independent ofc(G) since, as is illustrated
in Fig. 2, in the Gaussian scattering approximation the str
ture factors are,A(Q)5A0

0(Q).123Q2^r 2&/5 as Q→0.
Figure 3~b! shows the temperature dependence of the par
mean-squared displacement. At low temperature^X2&
53R2/5, like for diffusion inside a sphere of radiusR while
^X2&;9kBT/5s at higher temperature, like for motions in
harmonic potential. This behavior is compatible and ori
nates from diffusion inside a sphere with a thick soft surfa
the thickening of the spherical surface with temperature
sulting from the environment fluctuations.

Let us turn now to the quasielastic term ofS(Q,v). The
dynamics involved can be characterized by considering
position correlation functionC(0,t) obtained in taking the
Q→0 limit of C(Q,t) in Eq. ~15! to give:

C~0,t !5F E
1

`

ḡ~b«,x! e2Gt/x2
dxG c~ t !; ḡ~b«,x!

5
x7 e2b«x2

E
1

`

x7 e2b«x2
dx

. ~20!

The effective distributionḡ(b«,x) of relaxation timesx2/G
is maximum atxm5max@1,(7/2b«)1/2#. For the purpose of
illustration we consider the situation where the fluctuat
dynamics of the sphere radius is described by the Lang
oscillator with the correlation function
01191
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c~ t !5e Fcosh~mt !1S 2m D sinh~mt !G ; m5
2

,

~21!

whereg and v0 are the collision frequency~related to the
dissipation! and the frequency of the oscillator. The initia
decay rate constant ofc(t) is zero and its relaxation time i
g/v0

2.
As shown in Fig. 4~a!, because of the distribution of re

laxation times due to fluctuations of the sphere radius,
C(0,t) is no longer a single exponential. Whenc(t)51, the
short time behavior ofC(0,t) can be fitted bye2kt, wherek
is the initial decay rate~see below! of C(0,t), while e2kt,
wherek is the relaxation rate~see below! of C(0,t), is a poor
approximation ofC(0,t) although they coincide aroundGt
515. In the presence of fluctuations whenc(t)Þ1, C(0,t)
is essentially dominated byc(t).

The initial decay rate ofC(0,t) is,

k52
dC~0,t !

dt U
t50

5
3R2

5^r 2&
G

.H G ; b«→` ~ low T!,

b«G/3 ; b«→0 ~high T!.
~22!

In this example,k is independent ofc(t) andG/k coincides
with the mean-squared displacement. If one uses for the
fusion coefficient the relationD5kBT/mj, wherem is the
particle mass andj the friction coefficient, we find thatk
}T at low T, while k.(x1

0)2s/mj independent of tempera
ture for highT.
0-5
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The relaxation rate,k215*0
`C(0,t) dt, which depends on

characteristics ofc(t), is

G

k
5F E

1

`

x7 e2b«x2
dxG21E

1

`

dx F x9 ~11gx2/G! e2b«x2

11gx2/G1~v0 /G!2x4G .

~23!

The ratiok/k as a function of inverse temperature is plott
in Fig. 4~b!. Three types of decays ofC(0,t) can be noted:
k/k,1 theC(0,t) has a nonexponential decay dominated
the distribution of relaxation times,k/k51 then C(0,t)
5e2kt, andk/k.1 where the nonexponentialC(0,t) @which
originates from both the distribution of relaxation times a
c(t)# may show oscillations and have long tail decay. The
differences in the decay ofC(0,t) are more pronounced fo
b«→0 ~high T) where k/k can be very large whilek/k
→1 @i.e., C(0,t) is almost a single exponential# when b«
→` ~low T). Finally, it goes without saying, that when w
are concerned with the jump diffusion in a fluctuatin
sphere, all the expressions derived above remain uncha
except that the exp$2(xn

l )2Dt/a2% in Eq. ~15! is replaced by

exp$2@12e2(xn
l b)2/2a2

# g j t%, where b and g j are the jump
length and frequency@12#, respectively.

SUMMARY

Let us summarize the main results derived above. We
that as a result of the environment fluctuations, the EISF
the system is given by Eq.~7! and the incoherent scatterin
correlation function C(t), given in Eq. ~8!, is C(Q,t)
5(n^e

2ln(a)t& c(t), where the average is taken over t
Q-dependent effective distribution of relaxation times a
c(t) is the correlation function of the fluctuating length.

For the jump dynamics between sites, Eq.~7! reduces to
^A0(Qa)&, which is the EISFA0(Qa) @in Eq. ~1!# in the
absence of fluctuations averaged over the distribution of
interspacing. As the relaxation rateG ~in the absence of fluc
tuations! is independent of the site interspacing, the incoh
ent scattering correlation functionC(t), given in Eq.~11!, is
equal toC(t) in the absence of fluctuations timesc(t).

For the diffusion inside a fluctuating sphere, on the ot
hand, Eq.~7! reduces tou^F(Qa)&u2 whereF(Qa), given in
Eq. ~2!, is the scattered amplitude for diffusion inside
sphere of fixed radiusa and the average is taken over th
distribution of radii. However, the normalized elastic inte
H.

ta
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sity I (Q,c), given by Eq.~18!, involves two contributions
depending on the relaxation of the sphere radius over t
scalesG21. When the particle diffusion is slow compared
the fluctuations of the sphere,I (Q,c) is equal tou^F(Qa)&u2
while, in the opposite limit, it is is given bŷuF(Qa)u2&.
Since the relaxation timetn

l (a) for the diffusion in a sphere
depend on the sphere radius, the fluctuations of
sphere radius generate an effective distribution of rel
ation time so that C(Q,t), in Eq. ~15!, is C(Q,t)

5(n,l 50
` ^e2t/tn

l (a)& c(t), where the average is taken over th
Q-dependent effective distribution of relaxation times a
c(t) is the correlation function of the sphere radius.

It worthwhile to mention that whenc(t)51, the situation
resembles what is known as the heterogeneous scenari
the explanation of the stretched exponential or Kohlraus
Williams-Watts relaxation@13#. Such a situation may be en
countered in the case where the particle atoms in a pro
system undergo jump dynamics between sites~or diffusion
inside spherical cages! each of them with different site inter
spacing~radius!, i.e., polydispersity in length scales. In th
case,C(Q,t) is exponential for jump dynamics between sit
~provided thatG is the same for each particle! while it is
nonexponential for diffusion inside a sphere. The above
sults withc(t)Þ1 are derived in the homogeneous scena
@13#, which assumes that all particles are dynamically ide
tical.

To conclude, we emphasize that the dynamics of part
atoms in a protein system is a multidimensional problem
which the particles and constituent elements of their envir
ment undergo their own dynamics in their respective pot
tials. The speculative discussion outlined above is a q
simplified two-dimensional version~particle positionr and
site interspacing or sphere radiusa) of the problem. None-
theless, it is encouraging to see that the present analysi
dicates that the form of the scattering intensity, for instan
is quite influenced by the fluctuations. This suggests at le
reconsidering the way of fitting experimental data and rev
ing the interpretation of parameters determined. In the sa
spirit, an analysis combining particle dynamics and fluctu
tions in both the size and shape of the confining geomet
can be developed along these lines.
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