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Influence of environment fluctuations on incoherent neutron scattering functions
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In extending the conventional dynamic models, we consider a simple model to account for the environment
fluctuations of particle atoms in a protein system and derive the elastic incoherent structur¢gERfpand
the incoherent scattering correlation functié(Q,t) for both the jump dynamics between sites with fluctu-
ating site interspacing and for the diffusion inside a fluctuating sphere. We find that the EISF of the (gystem
the normalized elastic intensjtis equal to that in the absence of fluctuations averaged over the distribution of
site interspacing or sphere radiasThe scattering correlation function &(Q,t) == ,(e @Y y(t), where
the average is taken over tlig-dependent effective distribution of relaxation ratega), and i(t) is the
correlation function of the length. When ¢(t)=1, the relaxation ofC(Q,t) is exponential for the jump
dynamics between sitdsince\,(a) is independent o] while it is nonexponential for diffusion inside a

sphere.
DOI: 10.1103/PhysRevE.64.011910 PACS nuni®er87.15.He, 02.50.Ey, 66.10.Cb
By analyzing the incoherent scattering functi®iQ, ), , |3i1(Qa) 2
whereQ is the scattering wave vector arido the energy Ao(Qa)=|F(Qa)|*= “0a | 2

transfer, techniques of quasielastic neutron scattering from
hydrogen atomgthe main neutron scatterers in a typical pro-
tein) allow us to study motions of particle@toms, mol-  Such an analysis is used by several autfidr8,9 to study,
ecules, chemical species, et biological system$1]. For  for instance, the internal dynamics, structure, and dynamics
this purpose, there are many physical situations of interestsf surface molecules in proteins. In these studies, the par-
such as molecules at surfaces, in micellar systems or iﬂcles(mainly hydrogen atomsare assumed to diffuse within
vesicles and structural cages, in which the system is modelgsermanent spherical cages.
by the jump of particles among sites or by diffusion inside a On the other hand, it is well known that proteins are fluc-
confining geometry2-5]. For instance, when the problem tuating systems that undergo configurational fluctuations in
can be described by the jump dynamics of a particle betweetheir structure. In different conformational substates, a pro-
two nonequivalent sites separated by a distandbe elastic  tein may have the same coarse structure but differs in local
part of S(Q,w) [i.e., the elastic incoherent structure factor configurations leading to the fluctuations of the local envi-
(EISB], is given by ronment of each protein atom. As a result, a distance be-
tween sites or a structural cage in a protein fluctuate in length
or size (and shapeand have a finite lifetime due to local
Ao(Qa)=1-2p(1-p)[1—jo(Qa)], (1) structural relaxation just like in the mode-coupling picture of
liquids [10]. In this respect, neglecting the fluctuations of
shapes for simplicity, the dynamics of each hydrogen atom
wherej,(2) is the spherical Bessel function of the first kind in a typical protein can be described, in the first approxima-
of orderl, andp is the probability of finding the particle in  tion, as a jump dynamics between sites separated by fluctu-
one of the sites. The incoherent scattering correlation funcating distances or by diffusion inside a fluctuating sphere.
tion C(Q,t) [i.e., the inverse Fourier transform of the quasi- |n this paper, we present a simple model analysis to ac-
elastic part ofS(Q,w)] is a single exponential independent count for fluctuations of the local environment. We focus on
of Q given by C(t)=e™"* wherel" (related to mean resi- the derivation of the EISF an@(Q,t) in situations in which
dence times of the particle in either gite the relaxation rate the site interspacing (for the jump between sit¢r the
of the probability of finding the particle in either site. This sphere radius (for the diffusion inside a spherés allowed
jump model has been used to study the internal moleculap fluctuate in the course of time. To model simply the fluc-
motions and to interpret the dynamical transition in proteinguations ofa, we consider the following dynamics for the
[6,7]. system formed out of a particle atom jumping between two
Likewise, when the problem can be described by the isosijtes[or diffusing inside a sphere with impermeable surjace
tropic diffusion inside a sphere with impermeable surfacethe particle keeps jumping between sites separated(by
[2], one finds that forQ small, the quasielastic part of (or diffusing within the spherical cage of radiaét) ] until it
S(Q,w) is well described by a single Lorentzian with the suffer aconfigurational collisiorof zero duration that equili-
linewidthI'y=4.33/a?, whereais the sphere radius afdl  prates both the site interspacitay the sphere radiygnd the
the diffusion constant of the particle. Equivalent§y(Q,t)  particle position. That is to say that after a collision the up-
=e To' wherel'y* is the typical time for a particle to dif- date particle position and the site interspadiagthe sphere
fuse over the entire sphere. For times of order or larger tharadiug are chosen according to the normalized equilibrium
I'y?! (i.e., in thew<T limit) the EISF is given by distribution,
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e~ BIV()+U(r,a)] ”
Pedr.a)=— i , CQ={ 2 gn(Qa)e @) y(t),
fdae‘ﬁv(a)f de r2e AUnaqgy =
0 0 0 0 -
® =[2 J dagn[ﬁV(a).Qa]e‘””‘a)t}lﬁ(t),
n=1J0
wherer = (r,(}), r is the particle position() stands for polar (8)

and azimuthal coordinated,(r,a) is the potential energy for

the particle position for a fixed, while V(a) is the potential where the average of any functioh(a) is defined as
of free energy associated to the lengtipherical cage of (f(a))=/{pe4a) f(a) da. Theg,(Qa) is the Q-dependent
radiug a, and3~*=kgT is the thermal energy. The reduced pare distribution of relaxation rates,(a) in the absence of

equilibriuTW distgbgtion for the Iengtha_l is _defined as,  flyctuations, whilegn[,@V(a),Qa] is the Q-dependent effec-
Ped@) =/o"dQ[or“Pe(r,a)dr. The waiting time between e distribution of relaxation rates that accounts for distribu-
successive configurational collisions is a random variablgjo, of a. To be specific, we assume that the effective poten-
function of site interspacingor the sphere radiyidy
ca’—e—2kgTIn(a) ; a=R,
o V(a)= % - a<R
| "o an @ ; a<R

where e = oR?, R (of order of the Van der Waals contact

Assuming that the environment fluctuations act on the parl—engm Is the minimum value o8, o is the force constant,

. O L ; . and the repulsive logarithmic term represents the entropic
ticle dynamics in renormalizing just the residence tirtfes - . . ' !
. ; e o contribution that accounts for the increase in configuration
jump dynamic$ or the diffusion constantfor diffusion dy- . A It of the bal b h
namicg, thus, the Green’s function, i.e., the probability den_space_aa INcreases. As a reSl_Jt of the arance etween the
sity of llindin7 the particle at the ’o.sit.i,an with site inter- attractive harmonic and repulsive entropic terms, the leagth
yC ing P - P X . . has an equilibrium value at finite temperatufegiven by
spacinga (inside a sphere of radiw®) at timet given that it

- P . . aeq= Max{R (kg /o) 2]. We note in passing that such a har-
was ”?'“a”y aFro W'th site interspacing (inside a sphere monic potential in Eq(9), without the entropic term, has
of radiusay), is given by

been used to study the hydrophobic effect in the volume
fluctuations of globular proteinsl1].
G(r,a,t|rg,a9)=Gy(r,t|rg;a)S(a—ag) ¥ (t) In what follows, we derive in detail the EISF and the
B C(Q,t) in Egs.(7) and (8), respectively, for the jump dy-
TPedra) [1=¢(V], ®) namics between sites and diffusion inside a sphere.

(a(t)a(0)) ©)

="= 5 ==

where Gy(r,t|rg;a) is the Green's function for a particle

with a fixed-site interspacing (or diffusing inside a sphere FLUCTUATING SITE INTERSPACING

of a fixed radiusa). Consider the jump dynamics of a particle between two
The incoherent intermediate scattering functio(Q),t), nonequivalent sites separated by a fluctuating distancg
(which is the inverse Fourier transform §{Q,w)) is stationary correlation functioft(t) and withr, and, being
the effective mean residence time of the particle in each site.
1(Q,t)=fdayfdrofdafdr d2'G(r,a,t|ry,a0) For one site located at the origin, we have
Xe QTP (rg,ap). p . r=0,
ef,[;%U(r,a): 1_p : r=a, : _ T1 .
Using into this relation the expression of the Green'’s func- . Tt 7
0 ;  otherwise,

tion in Eq. (5), one can show that for an isotropic problem,

the functionl (Q,t) splits into two parts as, (10

The distribution of relaxation rate is a delta function,

H(Q,)=A(Q)+[1-A(Q)]C(Q,1), ®  g,(Qa)=g,[Be,Qa]= 5, with \;=T'= 77 '+ 7, L. In this
case, the normalized scattering intensity is given by (BY.
where the elastic part, i.e., the EISF of the system, is with the EISF and the scattering correlation functiame-
pendent ofQ) given by
o iy, o0 . 2
A(Q)=U da| a0 [ “reerpyraar, AQ)=(Ao(Qa)) and C(ty=e Tiy(t),  (11)
0 0 0

whereAy(Qa) is given in Eq.(1). Sincel is independent of
and the incoherent scattering correlation functio(Q,t) the site interspacing, thus the effect of fluctuationsgh) is
containing all information about the relaxation dynamics, issimply multiplicative as in Eq(11). As a result of site inter-
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N ' interspacing, whilgX?)=3p(1—p)kgT/20 asBs—0, like

for motions in a harmonic potential. This behavior is com-
patible and originates from jump dynamics between soft
walls, the broadening of the point sites with temperature re-
sulting from the environment fluctuations.
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0.7
A@Q \\ Generalization of Eq9.11) and(12) to the case of jump
0.6 Y dynamics amongN equivalent sites on a fluctuating circle of
05\ \ \ 2 TN : : : ; ;
os L \ N radiusa is straightforward. In this case, the normalized scat-
L < e j tering intensity still writes like in Eq(6) with the EISF given
0.4 - <7 . by A(Q)=(Ay(Qa)) and theQ-dependent scattering corre-
L lation function by
0.3
[} 2 4 6 8 10 N
QR A(Qa) 2t | 7
: . cQ.H=|> wex —(—)sinz(—) (t),
FIG. 1. The EISFA(Q) in Eg. (11) as a function ofQR for p i1 1-(Ay(Qa)) T N
=0.5 ande/kgT=0.5,2 as quoted on the figure. The dashed line (13

represent®\y(Q) in Eg. (1) for a=R and p=0.5 for comparison.
where the amplitude
spacing fluctuations, the structure factd(Q) (shown in 1N )
Fig. 1) is the EISF for the jump dynamics between two sites A1(Q&)=N""Zq_1jo[2Qasin(na/N)]cogZIna/N)

separated by a fixed distana@veraged over the distribution for|=0.1 N, and- is the effective mean residence time

of the distance. Asge gets smaller, .the extrema @{(Q) in each site. Interestingly, the mean-squared displacement of
become less pronounced and are shifted to the left, compar?ﬁie particle is simply(X?)=(a2), where (a?) is obtained

to Ap(Q). The mean-squared displacement of the particle iSfr

om Eq.(12).
diIn[A

(X2)= _3% =p(1—p)(a? FLUCTUATING SPHERE

Q=0 The potential for diffusion inside a sphere of radawmith
3R2 R2 impermeable surface is
= p (1_ p) 2 + 1/2 B "

Be 1+ (ml2Be)Y%eP: erfo \/Be) 0 ; r=<a,
U(r,a)= (14

(12) ® ; r>a.

The solid line in Fig. &) represents this function. When In this case, the normalized scattering intensity is given by
Be—», we have(X?)=p(1—p)R?, like for nonfluctuating  Eq. (6) with the scattering correlation function given by

[AL(Qa)—A(Q) Sy Son]

12 2
¢~ (¥p?Dila

E wdapeq(a)

A0 Jo [1-A(Q)]
C(Q.1)= N -~ v Pl2), (15)
gn(Qa,a)
|
where theA! (Qa) are given by[2,17: g
n(Qa) are g 2,12 9f LI (xOR 2P dx
1
0 _ 2\
6@+ D[ Qaja(Qa)-liQa)|? (Ao Q) =(FQH= e
An(Qa): 12 > 2 . (QR)ZJ x5 @~ Bex® dx
(xp)=1(1+1) (Qa)*—(xy) 1
(16) (173
EL(Qa, a) is the Q-dependent effective distribution of relax-
ation times (a)=a?/(x)?D, D is the effective diffusion - , |2
constant, andx!, are the roots of equation2,12], 3L x*j1(xQR) e~ #*dx
X j111(x)=1j,(x}). For the potential in Eq(9), the struc- A(Q)=|(F(Q))|?=
ture factors(AS(Q)) (i.e., the EISF for a sphere of radias QRJ 5 a=BX gy
averaged over the distribution of radand the EISF of the 1
systemA(Q) are therefore: (170
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FIG. 2. The amplitude$A8(Q)) andA(Q) in Egs.(17a and (17b), respectively, as a function @R for two values of the reduced
energye/kgT=0.5,2 as quoted in the figures. The dashed lines représgli@®) in Eq. (2) for a=R for comparison. Note thaQR
€[0.1,6] in the typical neutron-scattering experiment.

Figure 2 shows thaA(Q)<(AJ(Q)) for all QR, and the 1(Q, ) =(T) (AYQ))+[1— (T)]A(Q).  (18)
difference between the two functions increases with increas- ) ) )
ing the temperature, i.e., @ gets smaller. The location of This expression, which would represent the elastic part of

minima of A(Q) and <A8(Q)> do not coincide and their S(Q.®) fqr the resolution time of abodel, contrasts with
values are equal to zero féx(Q) while they are different the case in the absence of fluctuations, where the incoherent

from. zero for <A8(Q)>. Like in Fig. 1, the location of intermediate scattering function relaxes to the EISF for time

- : scales of order or greater thdh . Figure 3a) displays
minima are shifted to the left, comparedAg(Q) and tend 1(Q, ) versusQR for various values ofy(T'). Manifestly,

to disappear agBe gets smaller. To assess to what extent|(Q,l/,) is different from the EISFA(Q), even for y(I')
A(Q) and (A3(Q)) contribute to the elastic intensity, we =0.1. It is obvious that(Q, ) will eventually be equal to
turn back to Eq.(15). The shortest relaxation time of this the EISF in they(I')—0 limit when the particle diffusion is
expansion id %, whereT'=(x3)?D/R? is the typical ime  very slow compare to fluctuations of the sphere radius. In the
for a particle to diffuse over the entire sphere of radRis opposite limit, when the particle diffusion is fast compared
Whent~T""1, the second term containing the exponentialto sphere radius fluctuations, i.e/(I')~1, thel(Q,#) is
time-dependence in E@l5) can be neglected. In this case essentially given b){AS(Q)). The mean-squared displace-
the incoherent intermediate scattering function reduces to: ment of the particle is
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FIG. 3. Panel A: The intensityl (Q,#) in Eq. (18) for diffusion inside a fluctuating sphere, verf@R for ¢(I")=0.1,0.5,0.9 as quoted
in the figure.Panel B: Reduced mean-squared displaceméRfy/p(1—p)R? in Eq. (12) (solid ling) for jump dynamics and 6<2)/3R? in
Eqg. (19) (dashed lingfor diffusion, as a function of the reduced temperatu&/k.
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FIG. 4. Panel A: Correlation functionC(0t) in Eq. (20) as a function of the reduced tini& for the reduced energges=0.5. The
dashed and dot-dashed lines represetit and !, respectively, with=13T"/79 andk= 79'/633. Panel B: Reduced relaxation ratg x
[ratio of Egs.(23) and(22)] as a function of:/kgT. For the two panels, we have,=I'/2 and the quotations “under”¥=T'/4), “crit”
(y=T), and “over” (y=4I") correspond, respectively, to underdamped, critical, and overdamped regingés afi Eq. (21).

2_4 2
<x2>:—3% ~(r?) W) =€~ "2 costiut) + ﬁ) sinmm}; p=,
Q=0 (21)
_3R2{3+ 1+ —+ 1 1] (19
5 | Be Be  (Be)? where y and wq are the collision frequencyrelated to the

o ) o dissipation and the frequency of the oscillator. The initial
Note tha(X“) is independent of/(I") since, as is illustrated gecay rate constant af(t) is zero and its relaxation time is
in Fig. 2, in the Gaussian scattering approximation the struc—y/wg

— A —1_202/r2 :

tL!re factors areA(Q) =Aq(Q)=1-3Q%r%)/5 as Q—0. ) As shown in Fig. 4a), because of the distribution of re-
Figure 3b) shows the temperature dependence of tzeoég’?rt'dfaxation times due to fluctuations of the sphere radius, the
mean-squared displacement. At low temperat : . . _ '
=3R?/5, like for diffusion inside a sphere of radiiswhile C(0) is no longer a single exponential. Whest) =1, the

. . , Tt
(X2)~9kgT/50 at higher temperature, like for motions in a _short time behavior o€(01) can be fitted bye™*, Whe[ﬁf

harmonic potential. This behavior is compatible and origi—IS the initial decay ratésee below of C(0.), while e,

nates from diffusion inside a sphere with a thick soft surfaceYVherek is the relaxation ratésee belowof C(01), is a poor

the thickening of the spherical surface with temperature re@PProximation ofC(0;t) although they coincide arounit

sulting from the environment fluctuations. =15. In the presence of fluctuations wheft) #1, C(0\t)
Let us turn now to the quasielastic term $(Q,w). The IS essentially dominated by(t).

dynamics involved can be characterized by considering the The initial decay rate o€(0.t) is,

position correlation functiorC(0,t) obtained in taking the

Q—0 limit of C(Q,t) in Eq. (15) to give:

o , o _dcoop| 3R?
C(O,’E)=“’1 g(Be,x) e T dx| ¢(t); g(Be,x) = dt |_, 5(r2)
_ xe s z[r | e (ow ) (22)
= (20 Bel'l3 ; Be—0 (highT).

. In this example is independent of(t) andI'/ k coincides
The effective distributiory(Be,x) of relaxation timesx?/I"  with the mean-squared displacement. If one uses for the dif-
is maximum atx,,= max1,(7/28¢)Y?]. For the purpose of fusion coefficient the relatio® =kgT/mé&, wherem is the
illustration we consider the situation where the fluctuationparticle mass and the friction coefficient, we find thak
dynamics of the sphere radius is described by the Langevin T at low T, while k= (x3)2c/mé independent of tempera-
oscillator with the correlation function ture for highT.
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The relaxation ratek 1= [ C(0,t) dt, which depends on sity 1(Q, ), given by Eq.(18), involves two contributions
characteristics ofj(t), is depending on the relaxation of the sphere radius over time
scalesI’ 1. When the particle diffusion is slow compared to
, the fluctuations of the spher(Q, /) is equal td(F(Qa))|?
1w | X% (1+yx3T) e Aex while, in the opposite limit, it is is given by|F(Qa)|?).
L dx 1+ yX3T + (o /T)2x4 | Since the relaxation time'n(a) for the diffusion in a sphere
Y 0 23) depend on the sphere radius, the fluctuations of the
sphere radius generate an effective distribution of relax-
The ratiok/x as a function of inverse temperature is plottedatloz tlm%t/i?a) thatC(Q.1), in Eq. (15)_’ s CQ.Y
in Fig. 4b). Three types of decays @(0t) can be noted: = ni-o{€ " ™) ¢(t), where the average is taken over the
k/x<1 theC(0;t) has a nonexponential decay dominated byQ-dependent effective distribution of relaxation times and
the distribution of relaxation timesk/x=1 then C(0}) (1) is the correlation function of the sphere radius.
—e “andk/«x>1 where the nonexponentia(0,t) [which It worthwhile to mention that whegi(t) =1, the situation
originates from both the distribution of relaxation times andréSembles what is known as the heterogeneous scenario for
#(t)] may show oscillations and have long tail decay. Theséh‘? _explananon of the.stretched expoqenngl or Kohlrausch-
differences in the decay &(0,t) are more pronounced for Williams-Watts relaxation13]. Such a situation may be en-
Be—0 (high T) wherek/x can be very large whild/x countered in the case where the particle atoms in a protein
—.1 [i.e., C(O) is almost a single exponenflavhen Be system undergo jump dynamics between s{@sdiffusion
— (low T). Finally, it goes without saying, that when we inside spherical caggesach of them with different site inter-
are concerned with the jump diffusion in a fluctuating SPacing(radius, i.e., polydispersity in length scales. In this
sphere, all the expressions derived above remain unchangéésev_C(Qvt) is exponential for jump dynamics between sites
except that the e>{|&(xL)2Dt/a2} in Eq. (15) is replaced by (provided thatl" is the same for each partiglavhile it is
)220 . nonexponential for diffusion inside a sphere. The above re-
exp{—[1—e "' ] yjt}, whereb and y; are the jump  gyjts withy(t)#1 are derived in the homogeneous scenario
length and frequenc}12], respectively. [13], which assumes that all particles are dynamically iden-
tical.
SUMMARY To conclude, we emphasize that the dynamics of particle
Let us summarize the main results derived above. We find°™mS in a protein system is a multidimensional problem in
that as a result of the environment fluctuations. the EISE 0yvhich the particles and constituent elements of their environ-
the system is given by Edq7) and the incohereni scattering ment undergo their. own-dynar.nics in t_heir respectiye poten-
correlation functionC(t), given in Eq. (8), is C(Q.1) tials. The speculative discussion outlined above is a quite
=3, (e M@ty y(ty whe}e the average. i ’taken ovér the Simplified two-dimensional versiofparticle positionr and
n , L . i
Q-dependent effective distribution of relaxation times and>'e mter_spacmg or sp_here radia} of the problem. Nonef .
(1) is the correlation function of the fluctuating length. theless, It is encouraging to see that the present analyS'S In-
For the jump dynamics between sites, Eg). reduces to dicates that the form of the scattering intensity, for instance,
(Ao(Qa)), which is the EISFA,(Qa) [in’Eq '(1)] in the is quite influenced by the fluctuations. This suggests at least
absence of fluctuations averaged over the distribution of Sitéeconsm_jermg the way of fitting expenmenta_l data and revis-
interspacing. As the relaxation rdte(in the absence of fluc- ng _the Interpretation of parameters determlr_led. In the same
tuationg is independent of the site interspacing, the incoher—sfp'm'.an analysis _comblnmg particle dynam_|c§ and fluctua—
ent scattering correlation functig®(t), given in Eq.(11), is tions in both the size and shapg of the confining geometries
equal toC(t) in the absence of fluctuations timegt). can be developed along these lines.
For the diffusion inside a fluctuating sphere, on the other
hand, Eq(7) reduces td(F(Qa))|?> whereF(Qa), given in
Eq. (2), is the scattered amplitude for diffusion inside a
sphere of fixed radius and the average is taken over the  The author thanks J. Dianoux and E. Kats for their com-
distribution of radii. However, the normalized elastic inten- ments on the manuscript.
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